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Conformational Study of 
Macromolecular Systems 

MAHADEVAPPA M. KUMBAR 

Department of Chemistry 
Adelphi University 
Garden City, New York 11530 

A B S T R A C T  

A numerical solution of the sedimentation coefficient is 
obtained using three three-dimensional lattice models and 
has  been applied to a variety of macromolecular systems; 
in particular, polysome, single and double stranded DNA, 
protein polypeptide chains, and polystyrenes. Attention 
has  been directed to their  flexibility. In order  to under- 
stand the flexibility of the above-mentioned macromolecules, 
a comparison of the exponents of the molecular weight is 
made except for  the polysome, where the calculated In values 

are compared with the experimental values. It is concluded 
that the coiled configurations a r e  too extended to  fit the ex- 
perimental polysome values of rat l iver,  whereas the ring 
configurations of tetrahedral models are too open and on 
cubic-four and cubic-five choice models are too compact. 
The single-stranded DNA, which is supposed to be more 
flexible than the double-stranded DNA, has the flexibility of 
excluded volume configurations, while the double- stranded 
DNA possesses the flexibility of excluded volume configur- 
ations with exclusion of second order  o r  possibly higher 
order  nearest  neighbor interactions. The protein polypeptide 
chains and polystyrenes assume the behavior of the excluded 
volume configurations. 
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INTRODUCTION 

KUMBAFt 

Hydrodynamic properties, such as sedimentation coefficient, 
diffusion coefficient, rotational diffusion coefficient, and intrinsic 
viscosity, provide vital information regarding the structure, shape, 
size, and molecular weight of macromolecules. The hydrodynamic 
properties which are the macroscopic properties cannot yield 
definite information about the nature of macromolecules. Macro- 
molecules in solution are  of a statistical nature. In other words, 
macromolecules in solution, even under standard conditions, undergo 
a dynamic motion due to their configurational free energy which 
leads to continuous configurational change. Hence, it is impossible 
to obtain accurate information about the nature of macromolecules 
due to their dynamic motion. Therefore, one is forced to seek the 
help of macroscopic properties such as hydrodynamic properties or 
thermodynamic properties which give the best statistical average of 
the microscopic properties. 

In order to interpret such properties as hydrodynamic properties 
and their dependence on size and shape, a model closely related to 
the structure actually under investigation must be understood. The 
commonly used models are the ellipsoid of revolution, the rigid rod, 
and the random coil [ 1, 21. The possibilities also extend to 
cylindrically symmetric models with rigidities intermediate between 
the flexible coil and the rigid rod 3-6 . All these models are  based 
on the original work of Kirkwood I1 7, 8 on the theory of irreversible 
processes in solutions of macromolecules. These studies neglect the 
effect of excluded volume or the effect of chain stiffness. However, 
recently Grayet al. [ 91 have studied the Kratky-Porod workcoil model 
with the excluded volume effect. The excluded volume effect is 
usually scaled by the exponent of the molecular weight in the following 
equation which relates the hydrodynamic properties and molecular 
weight: 

( 1) 
6 X = a + b M  

where X is the sedimentation coefficient at infinite dilution or the 
intrinsic viscosity, and a and b a re  constants. For excluded volume 
systems, the parameter 6 deviates from the Gaussian value of 0.5. 

efficient is given by 
According to Kirkwood and Reisman [ lo], the sedimentation co- 
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CONFORMATIONAL STUDY OF MACROMOLECULAR SYSTEMS 1313 

where M, is the mass per frictional element; a = f/3nt7,, the effective 
Stokes diameter of an element: 17, is the solvent viscosity; ri = 

R. ./b is the reduced distance between elements i and j;  &ii is the 
Kronecker 6 function; and n is the number of identical structural 
units in a macromolecule (chain o r  ring). 

Due to t h e  ordered structure of macromolecules in solution the 
lattice models can be used to study their hydrodynamic properties. 
Recently Filson and Bloomfield [ 111 carried out the Monte Carlo 
study of tetrahedral and cubic-five choice lattice models as applied 
to polysomes. In the present investigation we are mainly con- 
cerned with the application of our numerical results to a variety of 
protein systems. Such a study may yield valuable information about 
the nature of the macromolecules, especially their flexibility. 

1J 

NUME RTCAL SOLUTION 

A numerical solution to Eq. ( 2 )  is obtained by using three types 
of three-dimensional lattice models; namely, tetrahedral, cubic-four 
choice, and cubic-five choice. We have studied these three models 
with and without exclusion of first nearest neighbor interactions. A 
direct enumeration technique which is well known [ 381 has been 
utilized and programmed for the CDC 3600 computer housed at Adelphi 
University. The functions 

have been utilized for the purpose of computation of sedimentation 
and diffusion coefficients, respectively. The numerical values of In 
and Jn for chain and ring molecules with no exclusion have been 
tabulated in Tables 1, 2, and 3, respectively, for tetrahedral, cubic- 
four choice, and cubic-five choice lattice models. In Tables 4, 5, and 
6 the I and J values with exclusion of first nearest neighbor inter- n n 
actions a re  given for tetrahedral, cubic-four choice, and cubic-five 
choice, respectively. 

as a first approximation the following forms for In and J 
In order to analyze the data for chain molecules we have assumed 

n’ 
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1314 KUMBAR 

TABLE 1. The Values of In and Jn for a Tetrahedral Lattice Model 
with No Exclusion 

No. of In Jn 
structural 
elements Chains Rings Chains Rings 

~~ 

2 
3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 

1.00000 
1.74158 
2.35268 
2.88872 
3.38031 
3.81700 
4.22493 
4.60238 
495454 
5.29318 
5.61310 
5.91526 

1.16104 
1.17634 
1.15548 

3.74698 1.12675 1.24898 

1.09055 
4.79170 1.05623 1.19792 

1.02274 
5.60196 0.99190 1.12039 

0.96235 
6.38452 0.93547 1.06404 

0.91000 

TABLE 2. The Values of In and Jn for a Cubic-Four Choice Lattice 
Model with No Exclusion 

No. of In Jn 
structural 
elements Chains Rings Chains Rings 

~~ 

3 1.80474 1.20315 
4 2.53235 2.70711 1.26617 1.35355 
5 3.16482 1.26592 
6 3.76777 4.09723 1.25591 1.36573 
7 4.29582 1.22735 
8 4.79974 5.30666 1.19993 1.32666 
9 5.25325 1.16737 
10 5.68507 1.13701 
11 6.08601 1.10649 
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TABLE 3. The Values of In and Jn for a Cubic-Five Choice Lattice 
Model with No Exclusion 

In Jn No. of 
structural - 
elements Chains Rings Chains Rings 

3 1.777 12 1.18473 
4 2.4520 2.70711 1.22603 1.35355 
5 3.03507 1.21403 
6 3.57926 4.05930 1.19307 1.35308 
7 4.06039 1.16009 
8 4.51661 5.13687 1.12915 1.28421 
9 4.95605 1.10133 
10 5.34973 1.06994 

TABLE 4. The Values of In and Jn for a Cubic-Five Choice Lattice 
Model with Exclusion of First Nearest Neighbor Interaction 

~ ~~~ ~ 

No. of In Jn structural 
elements Chains Rings Chains Rings 

4 2.40348 2.70711 1.20174 1.3 53 55 
5 2.94166 1.17666 
6 3.40743 3.991 56 1.13579 1.33050 
7 3.83019 1.09432 
8 4.21171 4.79617 1.05292 1.19904 
9 4.56661 1.01479 
10 4.91432 5.61436 0.98286 1.12287 
11 5.22170 0.94935 
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1316 KUMBAR 

TABLE 5. The Values of In and Jn for a Tetrahedral Lattice Model 
with Exclusion of First Nearest Neighbor Interactions 

No. of In Jn 
structural 
elements Chains Rings Chains Rings 

6 3.35098 
7 3.77132 
8 4.14508 
9 4.49617 
10 4 8202 1 
11 5.12641 
12 5.41315 
13 5.6867 5 

3.74698 1.11 698 1.24898 
1.077 50 

4.79170 1.03627 1.19792 
0.99913 

5.50236 0.96404 1.10047 
0.93203 

6.11954 0.902 15 1.01988 
0.87484 

TABLE 6. The Values of In and Jn for a Cubic-Four Choice Lattice 
Model with Exclusion First Nearest Neighbor Iqteractions 

No. of h Jn 
structural 
elements Chains Rings chains Rings 

4 
5 
6 
7 
8 
9 
10 
11 

12 
13 

2.47409 
3.06314 
3.56435 
4.01877 
4.43078 
4.81110 
5.1649 1 
5.49770 
5.80656 
6.10190 

2.70711 1.23704 1.35355 
1.22525 

4.06201 1.18810 1.3 5398 
1.14820 

5.15385 1.10769 1.28846 

1.06912 
6.17418 1.03298 1.32483 

0.99953 
6.75159 0.96772 1.12522 
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CONFORMATIONAL STUDY OF MACROMOLECULAR SYSTEMS 1317 

It is of interest to evaluate y1 and y2.  The exponents are obtained by 
applying the ratio method [ 391. Accordingly y1 and y2 a re  given to 
a first approximation by 

and 

7 2  - 
Jn+l - l I  

(4) 

Then yl and y2 a re  plotted vs. l/n in Figs. 1-3 for tetrahedral, cubic- 
four choice, and cubic-five choice lattice models, respectively. The 
lower series represent the y2 values and upper series y1 values. 
These alternating series can be extrapolated to n = 00. The extrapolated 
values are 

tetrahedral, cubic-4, and cubic- 5 
lattices, with no exclusion 

lim y1 - 0.48 
n-* 
lim yz - 0.52 
n -  m 

and 
lim y1 - 0.455 
n -* 1 lattices, with exclusion of first 
lim y2 - 0.545 
n-a0 

tetrahedral, cubic-4 and cubic- 5 

nearest neighbor interactions ( 6) i 
Substituting these values in Eq. ( 3 ) ,  we have calculated a, and a2 for 
all the lattice models. The extrapolated values are shown in Table 7. 
Thus the asymptotic relations represented by Eq. (3 )  are not 
completely accurate in describing the  behavior of long-chain macro- 
molecules in solution. In order to obtain more accurate forms, we 
have first calculated the difference between the experimental In, Jn 

and the computed In, Jn, which a re  

In A T  = a,n"l - n 
and 

- Jn A J  = a,n-Y2 n 
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1318 KSJMBAR 

OJO t 
I I I I I I I I I I ' I  

2 4 8 10 12 14 16 18 20 6 
2 

1/n x 10 

FIG. 1. The plot of y1 (upper two series) and yz (lower two 
series) vs. l/n for tetrahedral lattice model. The inner two series 
indicate the exclusion of first nearest  neighbor interactions. 

To examine the dependency of AIn and A Jn on n, we have plotted A In 
and A Jn vs. l/n in Figs. 47. From the graphs it appears that 

lim AIn - bl 

n - w  
and 

lim A Jn - 0 

n - m  

where b, values are tabulated in Table 7. From this analysis it is 
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7 
r, 

and 

11" x 1 0 2  

FIG. 2. The plot of y1 (upper two series) and yz (lower two series) 
vs. l/n for cubic-four choice lattice model. The inner two series in- 
dicate the exclusion of first nearest neighbor interactions. 

clear that In and J, can be represented by the following general types 
of relations. 
For lattice model with no exclusion 

I = alno '48 + b, n 
tetrahedral, cubic-4, and cubic- 5 ( 8) i and 

J = a2n-O.'* n 
For  lattice models with first nearest neighbor exclusion 
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1320 KUMBAR 

I n = a11n0*445 + bl' 1 
and tetrahedral, cubic-4, and cubic-5 

n = "2'"-0.546 

All  the parameters for Eqs. (8) and (9)  can be found in Table 7. 
We have made no effort to examine the further dependence of 
In and Jn on n. Also, due to small amount of data available on 
ring molecules, we did not analyze the numerical results. 

! 
r, 

and 

FIG. 3. The plot y l  (upper two series) and yz (lower two series) 
vs. l/n for cubic-five choice lattice model. The inner two series 
indicate the exclusion of first nearest neighbor interactions. 
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1.5 

1.3 

1.1 

0.9 

*In 

0.7 

0.5 

TABLE 7. The Values of the Parameters  in Eqs. ( 8 )  and (9) f o r  
Various Models 

With exclusion of 
fir st nearest  neigh- 

No  exclusion bor interactions 

- 

- 
- 

- 

- 

- 

- 

models a1 b, a2 a,’ b,’ a2’ 
Lattice 

Tetrahedral 1.97 -0.14 4.03 2.04 -0.3 4.07 
Cubic-4 choice 2.32 -0.19 4.7 2.17 -0.22 4.36 

Cubic-5 choice 2.21 -0.17 4.42 2.07 -0.27 4.14 

// / 

// ’ 

I I I I I I I I I I 
I 3 5 7 9 1 1  13 15 17 19 21 

2 
I /n  x 10 

FIG. 4. The values of A I n  from Eq. (34) are plotted vs. l/n for all 

three models: ( a )  diamond, (b) cubic-5, and ( c )  cubic-4. 
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1 I I I I I I I I I I 2 4 6 8 10 12 14 16 1 8  20 

I / n.x 12 

FIG. 5. The values of A I n  are  plotted vs. l/n for all three models 
with exclusion of first nearest neighbor interactions: (a) diamond, 
(b) Cubic- 5, and ( C )  cubic-4. 

POLYSOMES 

Polysomes a re  ribosomal aggregates and are thought to be the 
active units in protein synthesis in animals [ 121 a s  well as in 
bacterial systems [ 131. Polysomes consist of ribonucleoprotein 
particles held together by a single stranded messenger RNA. 
Electron micrographs of thin cell portions have revealed such con- 
figurations as double rows, loops, spirals,  circles, rosettes [ 141, 
and helices [ 15, 161. 

dicate two types of configurations; the open configuration in which 
the ribosomes are visible as beads on a threadlike structure, and 
cluster configuration in which ribosomes a re  tightly packed together 
in a structure which resembles an ellipsoidal shape. Such clustering 
was thought to be caused by the drying procedure used to prepare 

Electron micrographs of cell-free preparations of polysomes in- 
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*J" 

FIG. 6. The values of A Jn from Eq. (34) are plotted vs. l/n 
for all three models: (a)  diamond, (b)  cubic-5, and (c) cubic-4. 

0.71 

*J" 

FIG. 7. The values of A J n  are plotted vs. l/n for two models 
with exclusion of first nearest neighbor interactions: (a) diamond, and 
(b )  cubic-4. 

samples for the electron micrographs since the percentage of cluster- 
ing was reduced when more carefully prepared samples were used [ 171. 
Besides these structures, other structures like circles with a handle 
or turned inward as if to start a spiral  [ 181, irregular clumping and 
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1324 KUMBAFt 

extended ar rays  [ 191, and flattened helices [ 18, 201 have also been 
observed. 

These experimental observations under the electron microscope 
suggest that ordered configurations may exist in solution. In the past 
few years several attempts have been made to interpret sedimentation 
data on polysomes in te rms  of the model configurations. Gierber [ 211 
approximated the polysomes as a linear chain of spherical particles 
approximated by the equivalent ellipsoid to account for the experimental 
sedimentation coefficients, and he concluded that the linear chain model 
accounts for the smaller aggregates ( n  = 2 to 3) and is too open to fit 
the data for polysomes containing more than three ribosomes. 
Eiserling et aL [ 221 obtained good agreement with the experimental 
values of sedimentation coefficients of polyribosomes in a DNA- 
dependent amino acid incorporating system from Escherichia coli 
extracts using polygonal models containing up to  five ribosomes. 
Pfuderer et al. [ 231 used the helical models having three o r  four 
ribosomes per turn and a pitch of 18 or 20" to  f i t  their  experimental 
sedimentation data of rat liver polysomes. Filson and Bloomfield 
[ 111 analyzed the sedimentation data of polysomes from rat liver in 
te rms  of random coil and helical models and concluded that helical 
configurations are too compact and random coil configurations are too 
extended to account for the actual configuration. They also conjectured 
that the t rue configuration is a mixture of two. 

Let us  consider that polysomes are made up of n identical ribosomes 
evenly spaced along the messenger RNA, so that the Kirkwood-Reiseman 
equations for sedimentation and diffusion coefficients can be applied 
in this case also. We define two functions, one for the sedimentation 
coefficient following Filson and Bloomfield [ 111 and another for the 
diffusion coefficient: 

where S, ( D, ), S2( DJ, and Sn( Dn) a re  the sedimentation (diffusion) co- 
efficients of the first, second, and nth ribosomes. Substituting the 
values of S , (D, ) ,  S,(D,), and Sn(Dn) from Eq. ( 2 )  into Eqs. ( 10) and 

( ll), we have 

. n n  

i# j 

and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
2
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CONFORMATIONAL STUDY OF MACROMOLECULAR SYSTEMS 1325 

2 

n 
= -  In 

where r. .-' is  the reciprocal distance between the ith and jth 
ribosomes measured in units of the nearest neighbor spacing. The 
numerical values of I and J for  chain and ring molecules can be n n 
found in Tables 1, 2, and 3 for tetrahedral, cubic-four choice, and 
cubic-five choice lattices, respectively, and for chains and ring 
molecules with exclusion of first nearest neighbor interactions in 
Tables 4, 5, and 6, respectively, for tetrahedral, cubic-four choice, 
and cubic-five choice lattices. 

1J 

P o 1 y g o n a l  C onf  i gu  r a t  i o n  s 

In Fig. 8 we have plotted the numerical values of In vs  the number 
of ribosomes up to n = 12 for all three lattice models with and without 
exclusion of first nearest neighbor interactions. Experimental values 
of In shown in the figure by circles are calculated from the data of 
Pfuderer et,al. [ 231 using their  "best values" and taking into account 
their  estimated probable error.  The S,, ( =  335) and probable e r ro r s  
for I,, I,, , I , , ,  and I,, have been estimated. The calculated I values 
for the tetrahedral lattice fall below the experimental values and for 
the other two lattices fall above the experimental values except that I,, 
for the cubic-four choice with exclusion of first nearest neighbor 
interactions falls below the experimental value. It appears that the 
polygonal configurations for tetrahedral lattice a re  too open and for 
the other two lattice models a re  too compact to  compare with experi- 
mental results. However, the calculated values f a l l  in the range of 
probable e r ro r s  which shows that lattice models can be used, at least 
for  polysomes containing a small number of ribosomes. 

Eiserling et al. [ 221 used polygonal models to  explain the experi- 
mental sedimentation data on polysomes in the DNA-dependent amino 
acid incorporating system from E. coli extracts. They assigned a 
pentagon for a cluster of five, a square for a cluster of four, a 
triangle for a cluster of three, and two straight chains for a cluster 
of two. We have calculated I from their experimental sedimentation 
values taking S, = 7OS, and the values a r e  tabulated in Table 8. The 
experimental values of I , ,  I,, and I ,  a r e  compared with the computed 
values. These polygonal structures seem to f i t  the coiled configurations 

n 

n 
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'n 

I I I I I I I 
2 4 6 8 10 12 14 

n 

FIG. 8. The plot of In( ring) vs. n for diamond, cubic-4, cubic-4 with 
excluded first nearest neighbor interactions (wefnni), and cubic- 5 lattice 
models. Experimental values taken from Ref. 23. 

also, at least in the cases of I, and I,. The computed values of I, and I, 
for the tetrahedral lattice model fit very closely to the experimental 
values. However, the computed I, values for all the models a r e  far 
less than the experimental value, which suggests that the configurations 
are too extended. Moreover, the polygons of odd size do not exist on 
these models. The square configuration can be obtained on cubic-four 
and cubic-five choice lattice models. Comparing the I, value for these 
models with the experimental value indicates that the computed square 
structures are too compact. Thus it appears that the polygonal 
structures for smaller aggregates ( n  = 3, 4) can also be fitted to  open 
coil configurations. 
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TABLE 8. The Experimental and Computed In Values for Polysomes 
in DNA-Dependent Amino Acid Incorporating System from E. coli 
Extracts 

n (experimental) In (calculated) 
~~ 

3 1.75 

4 2.375 
5 3.25 

1.74158 (tetrahedral, chain) 

2.35268 (tetrahedral, chain) 

C o i l e d  C o n f i g u r a t i o n s  

The numerical values of In for all three lattice models with and 
without exclusion of first nearest neighbor interactions a r e  plotted in 
Fig. 9. Experimental values for rat liver [ 231 are shown by circles 
and a r e  included for the sake of comparison. The In values for all the 
systems fall below the experimental values and, furthermore, In values 
fo r  exclusion of first nearest neighbor interactions even fall below the 
In values with no exclusion. Smaller aggregates, for example, n = 2, 3, 
and 4 cubic-four and cubic-five choice models, give better estimates 
of experimental values, and the tetrahedral model underestimates the 
experimental values. For  higher aggregates, as the number of 
ribosomes increase, the In values for all the models start to deviate 
from the experimental values. The largest deviation occurs in the case 
of the tetrahedral model which even falls outside the range of probable 
e r ror ,  and the smallest deviation occurs for the cubic-four choice 
model with no exclusion. The behavior of all these lattice models can 
be explained in te rms  of their  lattice structure. The tetrahedral 
model yields smaller In values due to its more open structure, while 
the cubic-four choice yields larger values due to its more compact 
nature compared to the other two lattice models. From the overall 
picture it can be concluded that the cubic-four choice model with no 
exclusion is the better choice for the study polysomes, at least for 
smaller aggregates. 

D E O X Y R I B O N U C L E I C  A C I D  

The sedimentation coefficient of double-stranded DNA has been in- 
vestigated experimentally [ 24-28] and theoretically [ 31 using the 
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FIG. 9. The plot of I (chain) vs. n for various lattice models: (a) 
diamond lattice with excluded first nearest neighbor interactions? (b )  
diamond, ( c) cubic-4 with excluded first nearest neighbor interactions, 
(d) cubic- 5, and (e) cubic-4. 

n 

Kratky-Porod wormcoil modeL Furthermore, the effect of excluded 
volume has also been examined [ 93. In addition to double-stranded 
DNA, the data on the sedimentation coefficient of single-stranded DNA 
is also available. An excellent review on this subject has been pub- 
lished [ 291. All these experimental and theoretical efforts have con- 
centrated on determining the flexibility of single- and double-stranded 
DNA. The flexibility is usually expressed through the parameter 
known a s  persistence length. or the Kuhn statistical length. The determina- 
tion of flexibility of DNA might be more vital to understand the genetic 
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property of DNA, which i s  considered to be the sole car r ie r  of genetic 
information in living organisms. Surprisingly, the flexibility of DNA 
is known only with large uncertainty [ 321. 

The flexibility of DNA or any macromolecule can also be measured 
in te rms  of the &type parameter which is defined in Eq. ( 1). This 
parameter represents the excluded volume effect as well as flexibility 
and tells  us how much the macromolecule deviates from its most 
random coiled configuration. Since DNA configurations are known to 
have flexibility intermediate between that of a rigid rod and a random 
coil, it is possible to use lattice models having this character to 
study DNA molecules. Such a study is initiated in the present 
investigation. 

efficient using tetrahedral, cubic-four choice, and cubic-five choice 
lattice models with and without exclusion of first  nearest neighbor 
interactions. For no exclusion models the S o  was represented a s  

We have obtained the numerical solution for the sedimentation co- 

and for exclusion of first nearest neighbor interactions So was 

where all  the te rms  a r e  defined in Eq. ( 2). One way to obtain informa- 
tion about the flexibility of DNA (single or double stranded) is to com- 
pare the exponent of the molecular weight in Eqs. ( 14) and ( 15) with that 
of the experimental equation. We have made the comparison with the 
two experimental equations on double-stranded DNA. Doty et al. [ 261 
fitted their experimental data on sedimentation coefficients to 

S"20,W - - 0.063Mwo.37 

Comparing the exponents of the molecular weight in Eqs. (14), (15), and 
(16), the exponent in Eq. ( 16) is much smaller than the calculated 
exponents for both systems. This means that the DNA molecule, in this 
case, is  more rigid than the lattice models. Hence, both systems with 
and without exclusion of first nearest neighbor interactions for all the 
lattice models cannot be used to study this type of DNA due to their 
more coiled nature. In order to apply lattice models to this type of 
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DNA, more rigidity has to be introduced into the system. Such a 
characteristic can easily be brought about by exclusion of second and 
possibly higher order nearest neighbor interactions. Another ex- 
perimental equation is due to Sponar et al. [ 301 who fitted their 
sedimentation data on calf thymus DNA to 

= 0.0135M*463 Si0,W 

This equation has a larger exponent than Eq. ( 18). This large value 
was attributed to the more flexible nature of DNA prepared by a 
different method The experimental exponent falls within the limit 
of the lattice model study, In other words, the experimental 
exponent lies in between the two systems studied using lattice models. 
It is clear from this comparison that the lattice models may be used 
to investigate DNA molecules with this nature. 

In addition to double-stranded DNA, we have also examined the 
flexibility of single-stranded DNA. Eigner and Doty [ 311 reported on 
the investigation of denaturated (presumably single-stranded) DNA 
in 0.15 M Na'. They obtained the following relation between the 
sedimentation coefficient and molecular weight: 

so = 0 . 0 2 2 ~ ~ ~ ~ ~  
20,w 

By comparing the exponent of the molecular weight in Eq. ( 18) with 
that of Eqs. (14) and ( 15), it is obvious that the single-stranded DNA 
has the flexibility of the lattice models with no exclusion of first 
nearest neighbor interactions. The rigidity of double-stranded DNA 
comes from base pairing. When the double-stranded DNA denaturates 
or transforms into two single-stranded DNAs, the base pairing no 
longer exist, and the net result is an increase in configurational 
entropy. The increase in configurational entropy appears in the form 
of flexibility. Therefore, the flexibility of a configuration may be 
considered as a manifestation of configurational entropy as well as 
of other effects. 

A further verification of the applicability of lattice models to the 
study of DNA can also be made by considering the sedimentation ratio 
of linear and ring configurations. It is known that circular DNA 
sediments about 10-20% faster than linear DNA of the same molecular 
weight. This ratio remains fairly constant or only varies slightly 
over the entire range of excluded volume effect [ 291. Since the ratio 
In (linear)/$, (ring) is directly proportional to the sedimentation 
ratio, we have calculated this ratio for all the lattice models which 
a r e  listed in Table 9. Due to the small number of data available, 
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these ratios cannot be extrapolated accurately to n = m in order to ex- 
amine the validity of the lattice model studies. 

P O L Y P E P T I D E  CHAINS 

The polypeptide chains a re  the most commonly encountered units in 
native and synthetic proteins, Therefore, it is worthwhile to examine 
their flexibility. Tanford et al. [ 331 studied the hydrodynamic properties 
of 12 different proteins and obtained the general relationship between 
the sedimentation coefficient and the number of residues per chain. Their 
relation is 

where 7 and p a re  the apparent specific volume and density of the 
solvent, respectively. These authors concluded that the polypeptide 
chains in proteins have random coil behavior. We have made a 
comparison between the experimental exponent and the calculated 
exponents. The experimental value in Eq. ( 19) lies in between the 
calculated values shown in Eqs. ( 14) and ( 15). Hence, we conclude 
that the lattice models can be used in studying the pdlypeptide chains. 

POLYSTYRENES 

The lattice model studies can also be used to obtain information 
about the flexibilities of polystyrenes. McCormick [ 34, 351 in- 
vestigated the sedimentation coefficients of polystyrene and a - 
methylstyrene and proposed the following equations: 

S = 0.0 169 M * ( polystyrene ) 

and 

S = 0.0172M0'4 ' ((I -methylstyrene) ( 20) 

where both polystyrene and a-methylstyrene appears to have the same 
molecular weight exponent.. Comparing Eq. (20)  with our calculated 
equations, it is clear that polystyrene and a-methylstyrene have the 
flexibilities of the random coil with no exclusion of first nearest 
neighbor interactions. 
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DISCUSSION 

In the present investigation we have demonstrated that lattice model 
studies can be applied to a variety of macromolecular systems, mainly 
to understand their flexibility and hence their spatial distribution. The 
term "flexibility," which has been used extensively here, is not to be 
confused with "local chain stiffness.'' We have used the term "flex- 
ibility" to describe the deviation of the "configurational status" from 
Gaussian behavior. The deviation from Gaussian behavior may be 
understood from two points of view: 1) solvent and 2) solute. Accord- 
ing to  the first point of view, a s  we pass from the excluded volume 
problem to the excluded first nearest neighbor interaction problem, 
we increase the solvent-solute interactions. Thus the decrease in 
the exponent may be due to such interactions. These solvent-solute 
interactions also seem to influence the configurational properties, for 
example, the exponent in the mean square end-to-end distance equation 
has been found to increase when these interactions are included. Ac- 
cording to the second point of view, the excluded first nearest neighbor 
interaction chain is more extended than one with excluded volume, 
which is in turn more extended than the Gaussian chain. If we keep 
on excluding the second and higher neighbor interactions, we ultimately 
reach rodlike behavior. Thus the degree of extension vari,es from the 
most flexible (Gaussian) state to the rodlike state. Since the degree 
of extension varies, we assume that the flexibility also varies. There- 
fore, the excluded first nearest neighbor interaction chain might 
possess less flexibility than that of the excluded volume chain. In 
other words, the decrease in the exponent may be attributed to the 
''configurational status" in their respective conditions. Thus from 
our study it appears that the lattice model studies are certainly 
promising to an understanding of the true nature of macromolecules. 
The lattice model studies can also be applied with confidence to other 
macromolecular phenomena. Such studies have already been successful 
in the theory of helix-to-random coil transition [ 36, 3'71. 

We have tried to fit In data to experimental values of polysomes 
from two different sources. The experimental data on rat liver polysomes 
is compared with calculated ring and linear configurations in Figs. ( 8 )  
and ( 9). The I values for tetrahedral-ring configurations fall below the 

experimental values while for the other two lattice rings the configura- 
tions fall above the  experimental values. Moreover, the calculated 
values for the higher aggregates deviate considerably from the ex- 
perimental values. This can be explained in te rms  of their lattice 
structure. The tetrahedral-ring configurations a r e  too extended and 
the other two lattice rings a r e  too compact. The true configurations 
of polysomes are intermediate between these two cases. It can be seen 

n 
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from Fig. 9 that the coiled configurations for all the lattice models 
are too extended to compare with the experimental values. However, 
for lower aggregates (n  = 2, 3, 4, 5) the values are very close to 
the experimental values. For higher aggregates, the linear configura- 
tions of the cubic-four choice lattice seem to approximate the true 
polysome configurations. The agreement between the experimental 
and calculated values may be achieved by introducing a little more 
compactness in cubic-four choice configurations. In other words, the 
true polysome configurations closely resemble those of the cubic- 
four choice configurations but have a little more compactness. The 
polysomes in DNA-dependent amino acid incorporating systems from 
E. coli extracts, which were previously fitted to the triangle and square 
type, are fitted to open configurations. In view of this study, it can be 
said that the lower aggregates can be understood easily in terms of 
ring or chain configurations, but the higher aggregates cannot be 
understood due to their more complicated nature. 

The flexibilities of double- and single-stranded DNA have been 
examined by comparing the experimental and calculated 6 parameters. 
The single-stranded DNA possesses the flexibility of the excluded 
volume configuration while the double-stranded DNA possesses the 
flexibility of the excluded volume configuration with exclusion of 
second order or possibly higher order nearest neighbor interaction. 
To arrive at this conclusion, we have compared two equations, one 
experimental and another calculated, in which the experimental 
equation lacks an intercept and is based on heterogeneous samples, 
which can be criticized. In any case, the comparison gives us some 
idea about the flexibilities of macromolecules. We have also shown 
that besides these applications, the lattice model studies can also be 
applied to other systems such as protein polypeptide chains and 
polystyrenes whose behavior is s imi la r  to that of the random coil with 
no exclusion of first nearest neighbor interactions. 

We  conclude that if one wants to extract accurate information about 
the macromolecular systems using the direct enumeration study of 
lattice models as it is done here, it is necessary either to obtain 
information about higher step walks or to devise a method to reduce 
the uncertainty involved in the extrapolation of short step walks. The 
first case appears, at least for the time being, impossible due to the 
computer time required. 

NOTE ADDED 

Recently, K. E. Reinert, J. Strassburger, and H. Triebel (Biopolymers, - 10, 285 ( 1971)) studied homogeneous samples of DNA and obtained 

S o  - 2.5 = 0.0190Mm435 
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CONFORMATIONAL STUDY OF MACROMOLECULAR SYSTEMS 1335 

Comparing the exponent of the molecular weight with the exponents in 
Eqs. ( 14) and ( 15), it is obvious that this exponent also falls well 
below the lattice model exponents. Hence, the conclusion reached 
using the exponents of the heterogeneous samples remain valid even i f  
the  homogeneous sample is considered. 
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